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The dynamical diffusion of phospholipid tubules in highly concentrated solution has been studied as a
function of temperature by high-field magnetic birefringence and by dynamic light scattering in zero
field. Data at a temperature well below the lipid chain-melting transition T=T,, are analyzed using
theoretical predictions for rigid-rod dynamics. While qualitatively successful, these lead to an estimate
of the rotational diffusion constant which is larger than that anticipated when dynamical rod entangle-
ment in a homogeneous solution is the only effect considered at high concentration. For T—T,,, the re-
sults from both experimental techniques exhibit a marked temperature dependence, revealing dynamical
studies to be a sensitive and potentially interesting probe of the phase transformation at T,.

PACS number(s): 61.30.Eb, 61.30.Gd, 87.15.Da

When a phospholipid solution with some aqueous con-
tent is cooled below the lipid chain-melting temperature
T,,, a remarkable, hollow cylindrical structure called a
tubule may spontaneously form [1]. Lipid tubules are rig-
id, highly anisotropic particles with quite large dimen-
sions for self-assembled structures; they are typically a
few tens to several hundred microns in length L and a
few tenths to one micron in diameter b, and have wall
thicknesses of one to several bilayers. In a weakly aque-
ous solution, these dimensions may be controlled with
minimal polydispersity [2]. Theoretical models [3] for tu-
bule stability at 7' < T, focus on the establishment within
the bilayer of orientational or positional order character-
ized by an anisotropic elasticity; hence the lipid chains
are expected to be tilted with respect to the bilayer nor-
mal. In fact, x-ray diffraction studies [4] confirm this in
specific systems. More generally, morphological studies
suggest that either large vesicles (liposomes) [5] or loosely
wound, helical bilayer structures [6] may be tubule pre-
cursors; in the latter case, the tubules develop fully only
at T << T,,, and the helicity arises from molecular chiral-
ity.

However, the detailed physics of tubule formation, to-
gether with quantitative measurements of the process, is
largely an outstanding issue. In another paper [7], we
present a quantitative investigation of the phase transfor-
mation of highly concentrated tubules at T,, using high-
field magnetic birefringence and samples composed of the
phospholipid  1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-
phosphocholine (abbreviated DCg gPC) in an 85%:15%
(by weight) methanol:water solution. For this system, the
tubules have L =60 um, b~0.4 um, and single-bilayer
wall thickness [2]. From analysis of microscopy data,
these dimensions are found to be highly uniform. The di-
ameter and wall thickness are essentially constant, and
variance of L is less than 6 um [8]. For T—T,,, we ob-
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serve substantial pretransitional behavior in the induced
refractive-index anisotropy An at high field. In the
present paper, we demonstrate that the dynamical prop-
erties of solutions with tubule concentration v near v*,
studied by high-field magnetic birefringence (MB) and
zero-field dynamic light scattering (DLS), also reveal
quite marked pretransitional effects when T—T,,. Here
v* is the concentration at which an isotropic system of
hard rods is expected to become nematic [9]. More gen-
erally, our results indicate that lipid tubules are an im-
portant system for the study of hard-rod dynamics, which
is unique in that the particles are of very large size (and
hence have long diffusion times), that they have sufficient
magnetic-susceptibility anisotropy to be completely
aligned in currently available fields, and that they do not
aggregate significantly [4,6] even at quite high concentra-
tion. Our work represents a preliminary study, which
suggests an interesting direction for more extensive ex-
perimentation and the need for more detailed modeling of
the tubule-transformation process.

The equilibrium dynamical behavior of hard rods in
solution has been the subject of substantial theoretical [9]
and experimental [10—14] investigation since the classic
paper of Onsager [15] on the statistical mechanics of such
systems. The dynamics of rigid cylinders with L >>b
may be classified by the particle concentration v [9]. For
v<L 73, the “dilute” limit, the dynamics are those of a
single particle in a Brownian potential. When
L3 <v<(bL?)™!, the “semidilute” case, the form of the
single-particle diffusion equation remains valid so long as
the system is locally isotropic; however, the diffusion con-
stant is expected to be considerably modified by the topo-
logical constraint that the particles cannot cross through
one another. In the “concentrated” regime v~ (bL2)™ 1,
where the solution may contain mixture of nematic and
isotropic domains, steric interactions and local anisotro-
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py must be considered explicitly in the diffusion equation,
which, as a result, becomes quite complicated.

The methanol-water-tubule samples studied in the
present work were prepared at the Naval Research Labo-
ratory; the tubules were precipitated [2,4] from a
DC; oPC dispersion in pure methanol upon addition of
water and lowering of the temperature below
T,, =33.2°C [16]. The original lipid mass densities were
p=2.0 mg/cm® (MB experiment) and p=1.0 mg/cm’
(DLS experiment), corresponding approximately [17] to
v~(1.5-3.0)X10° cm 3, very near the upper limit for a
concentrated isotropic phase [7]. Care was taken to mini-
mize the exposure of the samples to room light and to
avoid cross-linking of the diacetylene groups. Cross-
linking results in an orange coloration of the sample and
an upward shift in T,,. Neither effect was observed in
the samples studied here. Our experiments were per-
formed promptly on well-mixed samples, over relatively
short periods ( <3 h), and with frequent changes in tem-
perature and magnetic field. The formation of tubule
“logjams” was observed to be significant only over rela-
tively long times (~24 h) and only if the sample was kept
still at constant 7" and H =0. Details of the apparatus
for very high-field, high-sensitivity MB measurements
have been given elsewhere [7]. The DLS apparatus is a
standard one for homodyne correlation spectroscopy.

Because the phosphate group of the lipid may become
protonated in a partially aqueous solution, the possibility
of Coulombic interparticle interactions, in addition to
steric (hard-rod) repulsions, must be considered. Howev-
er, it has recently been established [18] that at neutral pH
and even in purely aqueous solution, the net lipid charge
due to association of H ions is sufficiently small so that
the Coulomb barrier is less than or comparable to the
thermal energy k7, and the effective range of the
Coulomb force is short compared to both the large tubule
diameter (0.4 um) and the typical interparticle spacing
(~15 pm). In this case, the dynamical behavior is dom-
inated by topological constraints, and the effect of a weak
Coulomb repulsion may be incorporated by assuming a
slightly larger effective tubule diameter in the usual
hard-rod potential.

The quantities we have studied are the optical
refractive-index anisotropy An(t)=An_, S(t), where S is
the orientational order parameter (experimentally in-
duced by an external magnetic field H), and the
intensity-intensity autocorrelation function for polarized
scattered light Gy, (q,0)=(1,,(q,0,(—q,t)) at
wave-vector transfer q. The depolarized scattering Gy,
which couples mainly to rotational diffusion, is down by
several orders of magnitude [11] for rods with a small po-
larizability anisotropy Aa, Gyy /Gyy~(Aa)?/
(ay+2a,)*<<1. For large particles like tubules, Gy
would also be expected to have a relaxation time that is
too long to be studied by correlation spectroscopy.

An(t) [9] and Gy (q,t) [19] are given by

An()=Anp,, [ deRdu(uZ—uf)\I/(R,u;t), (1)

Gyp(q,0)=A[{v_g(0)vg(1))>—(|vg(0)[*)?], )
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with
(v_g(0)vy(1))
=f fo deRdudR’du’exp[iq-(R-R’)]
sin(Q-u) sin(Q-u’)
(Qu) (Quu)
X(¥(R,u;0)¥(R",u’;2))  (3)

for tubule density fluctuations vq and Q=qL /2. In these
equations, u is a unit vector along the tubule long axis (z
is taken as the direction of an external aligning field H),
R is the tubule center-of-mass coordinate, V is the il-
luminated volume, A is an empirical constant that de-
pends on the average tubule density, the tubule polariza-
bility, and details of the DLS apparatus, and W(R,u;?) is
the time-dependent combined positional and orientation-
al particle distribution function. The sinusoidal factors in
(3) account for the phase differences in the light scattered
from different points along the tubule length; additional
phase factors due to the finite tubule wall thickness
8=~5X 1077 cm may be set to unity since g8 << 1.

The spatial and temporal evolution of ¥ for concentra-
tions up to the liquid-crystalline phase may be described
by a Smoluchowski equation given by Doi et al. [9,20],

oW
S, = VIDuu+D, (w(I—uw) [ VE+ ¥V (U + U )]

+RD,(W)[RY+YR(Upp+ U, )] @

where the operators V=0/0R and & =uX3/du. In this
expression, the interparticle interaction is expressed by a
mean-field, excluded-volume potential [9]

UMF(R,u;t)=2va2f deR’du’|u><u'|\I’(R',u’;t) ,

which accounts for the steric repulsions between rods.
The single-particle interaction with an external magnetic
field is

Uelust)=—1AyH?u?2 .

The first term in (4) accounts for translational diffusion
of the tubules; the associated diffusion constants are D,
for motion along the tubule axis u and D, for motion per-
pendicular to u. The second term accounts for rotational
diffusion with diffusion constant D,. In very concentrat-
ed solutions, where local orientational anisotropy may be
expected, the constraint of no tubule interpenetration im-
plies a dependence of D |,D, on u [9,21]. (Because of the
large tubule aspect ratio, D is unaffected.) The dynami-
cal equation thus contains a nonlinear dependence on ¥,
making the general calculation of (1) and (2) a very
difficult problem.

Analytic results may, however, be obtained for certain
limiting cases. We will concentrate on those of interest
for our analysis below. For v~+v*, Eq. (4) incorporates
the following: (1) mean-field interactions; (2) the possibil-
ity for inhomogeneity in the spatial distribution (¥ de-
pends on R); and (3) dynamics dependent on tubule orien-
tation u because of local entanglement effects. The prob-
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lem of rotational diffusion has been solved rigorously [21]
for a concentrated, homogeneous hard-rod system in the
isotropic phase by dropping the conditions (1) and (2),
and treating (3). The results, obtained for relaxation of
the orientational order parameter after removal of a large
applied field H, where AYH?>>ky T, are [21]

S (t)=~exp[ —3(2a;D,)%t1/?] (52)
S (t)=~exp(—6D,t) (5b)

for S=1 (t—0) and S =0 (t — o), respectively. Also, a,

is a constant, a;=~0.33 [21], and [19]
D
= (©)
1+B,(vL")

where B, is an empirical parameter, 3, <<1, and D,, is
the rotational diffusion constant for a dilute solution [22],

_ 3kgT[In(L /b)—0.8]
77'"7sL3

r0 ’ (7)

with solvent viscosity 7g. For our tubules in methanol-
water at 25°C, we get D,,=7.7X 1075 sec”!. Equations
(5) show that the functional form of S(¢) depends on its
magnitude, a result of condition (3) above. Equation (6)
expresses a second effect, that of rod entanglement, on
the diffusion constant, which may be important even for
v<<v* [9]. For hard-rod systems, 3, is typically found
[10,23] to be rather small, B, ~10~%~1073, and has been
reported [11,24] as low as 5X 107>, Thus, in real sys-
tems, entanglement effects are in fact suppressed until
quite high semidilute concentrations are reached.

For v—v*, the mean-field interaction Uy becomes
important. In a homogeneous solution, where ¥ is a
function of u only, dynamical mean-field arguments pre-
dict [9] that D,—D,(1—v/v*) in Eq. (5b) for the decay
of S (¢) upon removal of a weak applied field. Thus, the
orientational response time TOCD,_], measured for small
H, should increase significantly on approach to v*; this
has been demonstrated [25] in a hard-rod system with L
and b about 100 times smaller than for tubules. A true
divergence, however, is not experimentally observable be-
cause of phase separation into nematic and isotropic
domains when v—v*. Such separation would lead to
sample inhomogeneity, and consequently to a dependence
of ¥ on the positional coordinate R. If this dependence
is substantial, an analysis based on a strict decoupling of
rotational and translational motion would not be applica-
ble, and the mean-field effects on D, may differ from the
case of an ideal homogeneous solution. The problem of
coupled rotational-translational diffusion, given by Eq.
(4), has been treated [19] in the calculation of the DLS
correlation function Gy [Eq. (2)] for a concentrated iso-
tropic system (v <v*, S ~0). When g ~0, the results are
similar to those obtained for a semidilute system, except
that the diffusion constants are emhanced by a factor
1+8v/v*. DLS experiments on a rigid-rod polymer sys-
tem at large v have in fact confirmed this enhancement
[14]. Thus, when v—v*, and if the phase-coexistence re-
gion is particularly large (suppressing the pretransitional
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effects), the tendency for D, to decrease due to orienta-
tional order may be offset by the effects of sample inho-
mogeneity in general and coupling to translational
diffusion in particular.

We now consider specific predictions for DLS that are
relevant for tubules. Detailed treatments of the problem
for hard rods have been given [11,19,26] with the neglect
of only condition (3) above, an approximation that may
not be too severe for v<v* and U,,~0. The key
parameter [9,26] in the analysis is the ratio
y=(D,—D,)q*/D,~B; '(gL)*. For y <10, the correla-
tion function G, (¢) may be accurately modeled as a
discrete sum of exponentials [11,13]. For y > 10, howev-
er, Gy (t) is characterized by a continuous distribution of
decay constants [9,21]; if the limit gL >>1 also applies, a
three-cumulant analysis

Gyy(t)y=Aexp | —2T't +’u,2t2—-ﬂt3

3 +B (8)

has been shown to approximate the exact behavior
rather well [26]. Since tubules have L >>A, we indeed
expect gL >>1. For our system with L =60 um, lab
scattering angle 6,=45°, A=6.33X 107° cm, and
solution refractive index n;=1.3, we get ¢qL
=(4mL /AM)ngsin[1/2sin~ (sin, /n;)]=44.  Moreover,
since 3, << 1, we should have ¥ >>1. Thus, we shall use
(8) to analyze the experimental DLS data for the tubules.
When gL >>1, the phase factors in (3) will oscillate
very rapidly wunless qlu,u’ (ie., Q-u=~O0 and
sin(Q-u)/(Q-u)=1, and similarly for u’). DLS from a
tubule solution at any reasonable 8, will therefore probe
only translational diffusion perpendicular to the rod axis.
A calculation of the parameters in (8) for coupled transla-
tional and rotational diffusion at gL >>1 gives [9,26]

2
Ti@= D+ D |2, a)
aler LT
—_— | = *
ml@)=73 75D | (9b)

where the superscript * here and in the following denotes
a renormalization due specifically to the mean-field in-
teractions. Since, for a dilute solution [22],
D, =D ,=kpTIn(L/b)/(4mgL), we have from (7),
D, ,=~(L*/12)D,,. If the topological constraints in a
concentrated isotropic solution have similar effects on D
and D, (i.e., if the form of (6) also applies to D), we may
also have D, ~(L?/12)D, and an analogous relation be-
tween D} and D when v—+v*. On the other hand, it
has been suggested [9,21] that D, is essentially negligible
at large v; in that case, D} <<(L?/ 12)D} might be ex-
pected. These two limiting possibilities for the predic-
tions (9) will be discussed further while analyzing the ex-
perimental data below.

We now turn to our results for the relaxation of An(t)
after the rapid removal of a magnetic field in which the
tubule alignment is saturated. Samples formed from a
lipid solution with p=2.0 mg/cm? (yielding v approxi-
mately at the theoretical upper limit for an isotropic
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phase) generally showed some optical anisotropy [7] in
zero field, presumably due to the presence of nematic
domains. The impact of large domains on the dynamics
after removal of the field from an aligned tubule state was
observed to be quite dramatic, resulting in some cases in
nonmonotonic behavior of An(¢) and more often in de-
cays to nonzero (i.e., nonisotropic) levels of An.

By a combination of mixing the sample immediately
prior to loading and cycling of the field between zero and
levels below saturated alignment, allowing for equilibra-
tion after each change in H, a zero-field system with
domain sizes much smaller than the probe beam cross
section (~400 um diameter) could be obtained. For these
samples, which showed a purely overdamped response to
field removal, the measured An(t¢) should reflect the ma-
croscopically averaged orientational dynamics of the sys-
tem [as assumed in Eq. (1)]. We do observe, however,
that even the best samples are not stable if left undis-
turbed at low temperature and zero field; some anisotro-
py over the illuminated volume (typically, ~10% of
An_,.) inevitably develops within a few hours. We be-
lieve that this may arise partly due to the orienting
influence of the cell windows. To minimize this effect
during an experimental run, we tried to avoid long
periods without a field sweep or temperature change; as a
result, our low-temperature data for An(¢) (where the de-
cay was slowest) are limited to about one decade of de-
cay. In any event, we considered only data that were
consistent with a decay to the background level deter-
mined by heating the solution to a phase above T,,
where the structure is isotropic [7].

In Fig. 1, we present a measurement of
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FIG. 1. Semilog plot of the decay of An(t)/An,,, for
DC; oPC tubules with p=2.0 mg/cm® (v~3X10° cm™3) at
T =18.61°C. Sweepdown of a 15-T field was begun at ¢ =0; the
time at which the field reached O T is shown. The solid lines at
short and long times are the predictions of Egs. (5) of the text.
The dashed line is a fit to a stretched exponential discussed in
the text. The long-time behavior is consistent with a decay to
An=0. Every other data point has been omitted for clarity.
The inset shows a detail of short-time behavior for comparison
with Eq. (5a).
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S(t)=An(t)/An,, from saturation (¢ =0) after linear
ramp-down of a 15-T field in 30 sec, and at a temperature
T=18.60°C, where the tubules are fully formed, and
where the initial system had An~0 at H =0. The sam-
pling interval is 4 sec. We find An_, =3.5X107° at
18°C. The birefringence is proportional to the polariza-
bility anisotropy Aa of the tubules, which arises from
both the shape (or “form”) and intrinsic molecular aniso-
tropies. (Spatial fluctuations in the polarizability also ac-
count for the amplitude of scattering; indeed, the shape
birefringence may be calculated from the scattering at
g =0 [27].) An expression for An_,, for cylindrical shells
with L >>A >>§ is given in the appendix of Ref. [7]. The
form birefringence is found to dominate, and reasonable
agreement was obtained with the experimental An,, at
low T for the tubule densities studied here; the data of
Ref. [7] also show An_,, <v.

The decay in the main part of Fig. 1 evidently does not
follow a simple exponential over the range studied. In
particular, while only recorded for S > 0.2, the data sug-
gest qualitatively different behavior at shorter (¢ <400
sec) and longer (f R 800 sec) times. At long times, the
data appear to fall on a single exponential, as expected
from the Doi-Edwards theory [Eq. (5b)]. The solid line
for InS(¢) at t 2 =750 sec gives D*=1.1X10"% sec” L.
We cannot say that this is truly the limiting value for
t— oo, although in Fig. 2 we present data at higher T,
which does indicate that a single exponential, extending
from S ~0.5, is the limiting form. On the other hand, at
short times, ¢ $400 sec, the data decay faster than a sim-
ple exponential; here the solid line in Fig. 1 represents a
fit to the short-time Doi-Edwards prediction, Eq. (5a),
which may be applied since k3T /(AyH?)~0.003, using

T
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FIG. 2. Semilog plots of the decay of An(t)/An,,, as a func-
tion of temperature for T— T, after removal of a 15-T field.
The labels (1)—(4) indicate temperatures 7=18.61, 25.95, 29.40,
and 31.77°C, respectively. Solid lines represent single-
exponential behavior at long times. Also indicated by the label
(5) is the behavior of An(t) for H—0 after cooling in high field
from 7> T, to the starting temperature 7=18.6°C. At the
lowest temperatures, every other data point has been omitted
for clarity.
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Ax=~5.7X10" ' erg/T? from Ref. [7] and H=15 T. The
data for ¢ <30 sec, when the field is changing, are exclud-
ed. The fit is of reasonable quality; in fact, the inset
shows that the Doi-Edwards prediction, InS ~¢!/2, holds
rather well. However, from (5a) with a;=0.33, we find
D,"‘=1.0><10—3 sec” !, about 10 times the estimate ob-
tained from the data at larger ¢.

The values of D} extracted by applying Egs. (5) to the
measured An(t) are thus quite different. Moreover, they
are anomalously large compared to the prediction based
on entanglement effects alone: DX=D, and, from (7),
D,<D,,=7.7X107 % sec”! for all B,. It is also apparent
that, at least for S =0.2, our results are not consistent
with the reduction in D that would be expected on ap-
proach to v* in a homogeneous zero-field system. Never-
theless, the qualitatively different functional forms in Egs.
(5) are reflected in the data, and we confirm that the
diffusion constant in Eq. (4) must contain an explicit
dependence on the tubule orientation u for large v.

To obtain another estimate of D,*, we consider an al-
ternative, phenomenological approach, which has been
used to account for strong collective effects in the decay
of orientational order in a highly concentrated hard-rod
system [28], and which yields a single prediction for all .
In this approach, S (¢) is assumed to decay via a continu-
ous distribution of dispersive modes, W(r), where 7 is the
decay time for a particular mode. The distribution func-
tion W may represent a significant polydispersity—e.g.,
rod length (not the case for our tubules) or domain
size—or account for particle interactions, whose range
or nature depends on variations in local conditions—e.g.,
the degree of orientational anisotropy or of homogeneity
in particle concentration—that arise during the decay
from the aligned state. S(¢) is then given by

S(t)~ fowdr W (1)exp , (10)

where W () is assumed to be normalized, f ? wW(r)=1.

The choice of W(r) is somewhat arbitrary; however,
the form

(11)

1 T
WO=Tyer T
was invoked in Ref. [28] and found to be consistent with
the dynamics of a large-v solution of cylindrical micelles.
Here (7) is the average decay time, and also the charac-
teristic cutoff time, of the distribution W. Combining
(10) and (11), one arrives at
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S (t)=exp , (12)

_ t
()
which represents a stretched-exponential time depen-
dence. Interestingly, this expression gives a ¢ dependence
identical to that of the short-time Doi-Edwards result
(7b).
More generally, one may consider in (12) an arbitrary
exponent, a71. The dashed line in Fig. 1 is a two-
parameter fit of the complete data for > 30 sec to a

stretched exponential with a and (7) allowed to vary
and the background fixed to zero for t = o. The results
show a small but clear systematic deviation from the data
at long times, ¢ R 1000 sec. We find a=0.59 for the ex-
ponent in (12), although the value approaches 0.5 upon
range shrinking of the fit to shorter times. Thus the devi-
ation from an exponent of 0.5 is mainly required to model
the behavior at longer times. Since we did not obtain
data for the final 20% of the decay, we cannot test the
stretched-exponential form very rigorously for large ¢; in
fact, its reliability has been questioned in the asymptotic
limit [28]. Assuming that all the collective effects in the
tubule reorientation are accounted for simply by taking a
stretched-exponential dependence, we may estimate for
the dashed-line fit in Fig. 1 DX=(D,)
~(6{7)) '=2.0X10™* sec”!, which lies between
the values obtained from Egs. (5). Again we arrive at a
diffusion constant for very large v that is greater than the
prediction for a concentrated isotropic phase in which
there is no coupling to translational diffusion.

The large values of D obtained using both the ap-
proaches of Egs. (5) and (10) suggest that the tubule reori-
entation near the isotropic-nematic crossover is strongly
influenced by collective effects beyond those due to topo-
logical constraints on the motion, and in particular that
there is significant coupling between rotational and
translational diffusion, the only mechanism that, as dis-
cussed above, might lead to an increase in the rotational
diffusion constant with increasing v. With 8, ~ 1074 an
enhancement of D, in Eq. (7) by a factor ~6 would be re-
quired to give D,* 2 D,,. The discrepancy between the ex-
perimental values for D} from an analysis by Egs. (5)
could indicate that the enhancement itself depends on the
degree of orientational order in the system. This would
not be too surprising since both the potential Uy and
the translational diffusion D, are functions of S. In any
case, a calculation of orientational relaxation based on
the full dynamical equation (4) would be quite useful.
Further, because of their unusually large size, one may
have to consider more explicitly the coupling of the tu-
bule orientational dynamics to flows in the solvent.

We next present results for S(¢) as a function of tem-
perature for T—T,,, the lipid chain-melting point. In
Ref. [7], we report a quite substantial range of pretransi-
tional decrease in the maximum induced index anisotropy
An,, for p<2.0 mg/cm? as Fig. 2 of the present work
demonstrates, we observe a broad temperature depen-
dence in the reorientation dynamics as well. In both
cases, T was always changed in high field. As discussed
in Ref. [7], the substantial range of pretransitional change
in An_,, suggests a continuous reduction of the tubule
anisotropy; we do not, however, believe it to represent
any true critical behavior at the tubule-isotropic phase
transition for p <2.0 mg/cm>. The decay time after re-
moval of the field decreases strongly with increasing 7,
and the decay is increasingly single exponential. From
this dependence, we find (see the solid lines in Fig. 2)
D,=3.5X107% 1.4X1073, and 4.0X1073 sec™! for
T=25.95, 29.40, and 31.77°C, respectively. Also, at
higher temperatures, where An_,, has significantly de-
creased [7], there is substantial reorientation while the



3482

field is being swept away; indeed, for |T —T,,|=~0.6°C, S
drops to about 0.35 during this time.

To account for these effects, we consider possibilities
for the transformation of the tubules when T'—T,,. The
marked increase in D, with T strongly points to a
structural evolution of the tubules. In fact, in pure water
systems, evidence from microscopy [5] suggests a trans-
formation to spherical liposomes at 7,,. For weakly
aqueous dispersions, our results for An_,, as a function
of T [7] indicate a substantial range of pretransitional
behavior in high field, and an isotropic system above T,
(no induced An). Here we shall briefly discuss two
scenarios for the pretransitional behavior. We assume,
consistent with electron-microscopy observations [6,8],
that the tubules in the weakly aqueous system are formed
of helically wound bilayer ribbons that are fused at the
edges. In the first scenario, we envision a uniform col-
lapse of the pitch of the winding with increasing T, re-
sulting in a more isotropic cylindrical structure with the
same surface area A¢=wbL. Hence L decreases and b
increases with the product bL remaining approximately
constant. Then 1/bL%~m/ AgL increases and, since the
particle concentration remains the same, v is pushed to-
ward the semidilute regime, where collective effects
should be reduced. We then expect that the form of the
decay after H =0 should approach a simple exponential,
as is evidently the trend in Fig. 2. Moreover, the decay
rate, D, <D, <L 3, will be strongly increasing for de-
creasing L, as observed. As a caveat, we point out that
Eq. (7) for D,, is only valid for L >>b; thus the relation
D, L3 would be expected to break down sufficiently
close to T, (where the induced An —0 [7]).

Because of the increase in D, as T—T,,, any behavior
for small ¢ that is not a simple exponential will be
suppressed to shorter times, perhaps eventually within
the field-sweep interval. In fact, at the highest T in Fig.
2, most of the decay occurs within the sweep interval,
and, although this may simply derive from the driving
effect of the changing field combined with the large D, es-
timated from the solid line after H =0, we can consider
the possibility that a short-time relaxation arising from a
structural evolution is involved for small An_,,. (The
mechanism of Eq. (5a) applies only for very anisotropic
hard rods—i.e., large An_,,.) If the tubules in a weakly
aqueous environment transform by first dissociating into
loose or “open” helical fragments that have substantial
gaps between the bilayer edges [6,8], the structures near
T,, might be rather flexible. This flexibility could, in
turn, lead not only to an increase in D,, but also to a
“stretching” distortion of the helix whose relaxation time
during removal of a large field would be very rapid (i.e.,
limited by the sweep time itself) compared to a rotational
diffusion process dominating at longer times. Of course,
to test this conjecture, detailed short-time data must be
obtained, perhaps with the use of pulsed fields.

Finally, we remark on an unusual and potentially in-
teresting observation. Figure 2 also shows the dynamical
response when H -—0 after cooling the system from
T>T, to the original temperature 7=18.61°C. The
same temperature steps were used for heating and cool-
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ing, and all temperature changes were made in high field.
Moreover, after cooling we recovered a value of An,,
very close to that measured prior to heating [7]. Based
upon the static data, one might therefore assume that the
original tubules had reformed. However, the dynamical
behavior, as Fig. 2 reveals, indicates otherwise. Over a
range of ¢ during which Arn for the original tubules de-
cays by almost e ~2, there is no change in An in the re-
formed system. One possibility for this behavior is a
large hysteresis in the reformation process; the structure
after cooling, which itself is quite anisotropic, may be
metastable, producing the original tubules only after a
sufficiently long time (during which An would eventually
decay). The exposure to the high field during cooling
may play an important role in this metastability, a
scenario we are currently investigating. Alternatively,
the tubules in the reformed system may for some reason
be longer. Since the actual concentration v~1/(8bL) but
the threshold v* ~1/(bL?), a sufficient increase in L may
result in v> v*, placing the system into the nematic re-
gime so that An would be stable. Because An, ~vL
[17] for L >>b (and v~1/L), the level of anisotropy
might not change much. Electron microscopy and DLS
experiments, which would probe the system immediately
after cooling from 7T'>T,, in high field, are planned to
help resolve this issue.

We now discuss DLS results obtained in zero field. A
solution with initial lipid density p=1.0 mg/cm® was
used in order to limit multiple scattering yet maintain a
tubule concentration in the same regime for hard-rod dy-
namics, v~ 1/(bL?), as that studied in our MB experi-
ment. We therefore expect the relative contributions of
the diffusion constants D,*, D} and D} to be similar in
the two experiments. Homodyne correlation functions
were collected at a 45° scattering angle and normal in-
cidence, giving ¢2=5.34X10° cm™2. The sample thick-
ness was 500 pm, chosen to minimize multiple scattering
while preserving a three-dimensional system. The possi-
bility of multiple scattering was checked by measuring
the forward extinction through the sample. At 22°C we
measured 95% transmission; this corresponds to an opti-
cal path 7=0.05, which is below the threshold
7~0.1-0.3 for significant multiple scattering [27]. Re-
sults for three temperatures below 7T, and two above T,
are presented in Fig. 3. The solid lines are fits of the
intensity-intensity autocorrelation function to a three-
cumulant analysis, Eq. (8); the background was always
fixed to the measured value.

As in the case of the relaxation of S (¢) (Fig. 2), we ob-
serve a quite clear temperature dependence for T—7T,,;
we obtain T,;/¢?’=4.4X1071° 6.4X107!° and
8.2X 1071 cm?/sec, and u,/I'3=0.83, 0.67, and 0.34,
for T=22.08, 27.95, and 31.94°C, respectively. Using
the experimental T'; /g2 at 22.08°C and Egs. (9), we may
extract values of D;* in the two limits discussed previous-
ly, D¥ <<(L?/12)D} and D?*~=(L?/12)D}. We get

*=1.5X10"*% and 7.3X107° sec”!. The former is
comparable to the low-temperature values obtained from
the MB data (Fig. 2) at large times,
DX=(1.1-3.5)X10"* sec”! for T=18.6-26.0°C, al-
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NORMALIZED Gw(t)—GW(m) AT §, = 45°

FIG. 3. Semilog plots of the normalized value of
Gyy(t)—Gyy(oo) for 6,=45° as a function of temperature for
T—T, and p=1.0 mg/cm>. The labels (1)-(3) indicate tem-
peratures 7'=22.08, 27.95, and 31.94 °C, respectively. The solid
lines are fits to Eq. (8) of the text. Data above T,, at T =33.99
and 35.06°C are indicated by the labels (4) (circles) and (5) (tri-
angles).

though the tubule concentration in the two experiments
differs by a factor of 2. We should also caution that the
MB value was obtained for a system with §>0.2,
whereas the DLS measurement was made when S ~0.
Nor is it clear on theoretical grounds [19] if the two
values, which presumably account for collective diffusion
effects, should be comparable when gL >>1 for DLS and
g ~0 for MB. Perhaps a more revealing parameter is the
normalized dispersion, u,/I'3. Equations (9) also give
u,/T?2=0.8 and 0.2 for D} <<(L?*/12)D} and
D* =~(L*/12)D}, respectively; the former agrees better
with the experimental value 0.83 at 7=22.08 °C.

As previously noted, tubules formed in methanol-water
solution are of very uniform size; we therefore do not ex-
pect polydispersity to account for a large p,. Assuming
AL /L <0.1 for the distribution in L at 22 °C (see above),
we may estimate the impact of polydispersity as follows.
In the worst case [B,(vL?)’>>1 in Eq. (6)],
D,x1/(v*L°)<1/L". Then, from Egs. (9) for both lim-
iting cases of D considered, the contribution to u,/I'? at
22°C from polydispersity could be as much as
(AT, /T')*~(5AL/L)*~0.2. This is still fairly small
compared to the measured value of 0.8 [however, it is
comparable to the predicted u,/I'? for the limit
D% =~(L*/12)D} in Egs. (9)].

These results support the validity of Egs. (9) for
gL >>1 and T << T,, (for fully formed tubules), and seem
more consistent with D} <<(L2?/12)D}. For T—T,,, we
observe that the measured I'; for p=1.0 mg/cm? in-
creases more slowly than D} obtained for p=2.0
mg/cm3. This may indicate that the details of the tubule
transformation at T,, differ in the two experiments due to
the different positions of the two concentrations in the
phase diagram for the system. Alternatively, if
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I, /q?>«<L2D}, the structural transformation may be
similar (as is indicated in the high-field results of Ref.
[7]), and the different rates of change for I'; and D may
simply reflect different dependences on a decrease in the
effective value of L. Moreover, the nonexponential char-
acter of Gy is reduced for T—1T,,. A reduction in L ac-
companying the decrease in u,/I'? at higher T is con-
sistent with the results of Ref. [14] on a rigid-rod polymer
system. There, a crossover from strong to weak nonex-
ponential behavior was found as vL3 dropped below
~300. Using v~2X10° cm™3 and L =6X 1073 cm for
the original tubules, we get vL3~430, so that a modest
decrease in L could lead to a marked change in the char-
acter of Gy. Finally, a difference in the observed rate of
increase of D,* and I'; with T may arise in part due to in-
creased two-dimensional confinement of the tubules; in
the light-scattering experiment, the cell thickness was
only ~ 10 times the initial tubule length.

At the higher temperatures 7=33.99 and 35.06°C, we
observe a much faster decay, which has
T',/9*=9.1X10"° cm?/sec for both temperatures. Evi-
dently, a sharp change in the dynamics occurs for
T~T,, ~33.2°C. If we assume that above T,, the struc-
ture is qualitatively different—specifically, that the sys-
tem consists of nearly spherical particles or aggregates
(e.g., vesicles), which is consistent with An_,, ~0 [7]—
we may estimate their mean radius from the well-known
prediction for single spheres, I'; /g?>=kp T /(675R) [29].
This also assumes that the particles are rigid (i.e., no in-
traparticle motion, which for R ~A could scatter light),
and that there are no significant interactions. We find
R =0.24 um, a very large value, which, based on the re-
sults of previous work [2,7] for p=1.0 mg/cm?, should
lead to a higher sample turbidity than we observe. We
find for the normalized dispersion of Gy, u,/I'?~0.5,
which is about 20% higher than typically found for large
vesicles [30]. These results suggest that a model of rigid,
noninteracting spheres at 7> T,, and for the initial lipid
densities p <2.0 mg/cm? studied in Refs. [2] and [7] may
be naive, and point to the need for a detailed study of the
q dependence of both the amplitude and decay constant
associated with the scattering, as a basis upon which to
evaluate models of the structure at 7> T,,. (For exam-
ple, particles of size R with gR ~1 should have a non-
trivial scattering form factor.)

To conclude, we have reported results for the dynami-
cal behavior of highly concentrated solutions of phospho-
lipid tubules on approach to the lipid chain-melting tem-
perature. From MB experiments, we have obtained at
T << T,, a value of the hard-rod rotational diffusion con-
stant that is larger than that predicted strictly from rod
entanglement effects in a homogeneous zero-field system,
suggesting that substantial coupling to translational
diffusion is involved in the rotational dynamics for the
very high concentration studied. DLS data for T <<T,,
support a theoretical calculation of the intensity-intensity
autocorrelation function for scattering from hard rods
when L >>A, and are reasonably consistent with the low-
T MB results when the orientational order parameter S is
small. For T <T,,, the decay of S(?) after removal of a
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saturating field shows short-time behavior, which, as
theoretically predicted for high fields, is not a simple ex-
ponential, and asymptotic behavior that is consistent
with a pure exponential.

For T—T,,, both the MB and DLS results show clear
pretransitional effects, which indicate a structural change
in the tubules, although much more complete dynamical
data will be necessary to test specific models of the trans-
formation, which have anyway yet to be fully developed.
These experiments are underway, together with a DLS
study of the behavior near T,, for different concentra-
tions in the range where we report in Ref. [7] an interest-
ing crossover in the shape of An_, . (T). It would also be
interesting to probe the dependence of the translational
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diffusion on the magnitude of S induced by a high field.
Finally, we might expect rather different pretransitional
behavior in the dynamics of tubules formed in a purely
aqueous solution.
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